
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/257792423

Solution of singlet and non-singlet unpolarized DGLAP evolution equations in

next-to-next-to-leading order (NNLO) by method of characteristics

Article  in  Indian Journal of Physics · February 2012

DOI: 10.1007/s12648-012-0022-5

CITATIONS

4
READS

89

2 authors:

Some of the authors of this publication are also working on these related projects:

Investigation of various models of the electron View project

Studies on hadron structure function and linear evolution equations View project

R. Baishya

J. N. College, Boko

11 PUBLICATIONS   120 CITATIONS   

SEE PROFILE

Jayanta Sarma

Tezpur University, Napam, Tezpur, India

84 PUBLICATIONS   442 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Jayanta Sarma on 13 July 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/257792423_Solution_of_singlet_and_non-singlet_unpolarized_DGLAP_evolution_equations_in_next-to-next-to-leading_order_NNLO_by_method_of_characteristics?enrichId=rgreq-840f2b09422348b76d79910705205f3d-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzc5MjQyMztBUzozODMyNjQ2OTYwOTQ3MjBAMTQ2ODM4ODgzMjIxMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/257792423_Solution_of_singlet_and_non-singlet_unpolarized_DGLAP_evolution_equations_in_next-to-next-to-leading_order_NNLO_by_method_of_characteristics?enrichId=rgreq-840f2b09422348b76d79910705205f3d-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzc5MjQyMztBUzozODMyNjQ2OTYwOTQ3MjBAMTQ2ODM4ODgzMjIxMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Investigation-of-various-models-of-the-electron?enrichId=rgreq-840f2b09422348b76d79910705205f3d-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzc5MjQyMztBUzozODMyNjQ2OTYwOTQ3MjBAMTQ2ODM4ODgzMjIxMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Studies-on-hadron-structure-function-and-linear-evolution-equations?enrichId=rgreq-840f2b09422348b76d79910705205f3d-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzc5MjQyMztBUzozODMyNjQ2OTYwOTQ3MjBAMTQ2ODM4ODgzMjIxMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-840f2b09422348b76d79910705205f3d-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzc5MjQyMztBUzozODMyNjQ2OTYwOTQ3MjBAMTQ2ODM4ODgzMjIxMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/R-Baishya?enrichId=rgreq-840f2b09422348b76d79910705205f3d-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzc5MjQyMztBUzozODMyNjQ2OTYwOTQ3MjBAMTQ2ODM4ODgzMjIxMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/R-Baishya?enrichId=rgreq-840f2b09422348b76d79910705205f3d-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzc5MjQyMztBUzozODMyNjQ2OTYwOTQ3MjBAMTQ2ODM4ODgzMjIxMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/R-Baishya?enrichId=rgreq-840f2b09422348b76d79910705205f3d-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzc5MjQyMztBUzozODMyNjQ2OTYwOTQ3MjBAMTQ2ODM4ODgzMjIxMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jayanta-Sarma-3?enrichId=rgreq-840f2b09422348b76d79910705205f3d-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzc5MjQyMztBUzozODMyNjQ2OTYwOTQ3MjBAMTQ2ODM4ODgzMjIxMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jayanta-Sarma-3?enrichId=rgreq-840f2b09422348b76d79910705205f3d-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzc5MjQyMztBUzozODMyNjQ2OTYwOTQ3MjBAMTQ2ODM4ODgzMjIxMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jayanta-Sarma-3?enrichId=rgreq-840f2b09422348b76d79910705205f3d-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzc5MjQyMztBUzozODMyNjQ2OTYwOTQ3MjBAMTQ2ODM4ODgzMjIxMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jayanta-Sarma-3?enrichId=rgreq-840f2b09422348b76d79910705205f3d-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzc5MjQyMztBUzozODMyNjQ2OTYwOTQ3MjBAMTQ2ODM4ODgzMjIxMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf
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Solution of singlet and non-singlet unpolarized DGLAP evolution
equations in next-to-next-to-leading order (NNLO) by method

of characteristics
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Abstract: In this paper, the singlet and non-singlet structure functions have been obtained by solving Dokshitzer, Gribov,

Lipatov, Altarelli, Parisi evolution equations in next-to- next-to-leading order at the small x limit. Here we have used Taylor

Series expansion and then the method of characteristics to solve the evolution equation. We have also calculated t and x-

evolutions of deuteron structure function as well as non singlet structure function and the results have been compared with the

New Muon Collaboration, E665 experimental data, CLAS Collaboration and NNPDF Collaboration data.
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1. Introduction

The high-energy lepton-nucleon scattering has served as a

sensitive probe for the substructure of the proton and

neutron. Experiments with high energy electrons, muons

and neutrinos have been used to characterize the parton

substructure of the nucleon and to establish the current

theory of the strong interaction, quantum chromodynamics

etc. Here the observations are scaling violation for the

unpolarized nucleon structure functions, the measurement

of the strong coupling constant aS Q2ð Þ, the confirmation of

numerous QCD sum rules, and the extraction of the parton

distributions inside the nucleon. The solutions of the

unpolarized DGLAP equation [1–4] for the Quantum

Chromodynamics evolution of parton distribution functions

have been discussed considerably over the past years

[5–13]. There exist two main classes of approaches: those

that solve the equation directly in x-space and those that

solve it for Mellin transforms of the parton densities and

subsequently invert the transform back to x-space. Some

available programs that deal with the DGLAP evolution are

PEGASUS [14], based on the use of Mellin moments and

QCDNUM [15], CANDIA [16] and HOPPET [17], all of

which are based on x- space.

The computation of the three-loop contributions to the

anomalous dimensions is needed to complete the next to

next to leading order (NNLO) calculations for DIS. The

NNLO corrections should be included in order to arrive at

quantitatively reliable predictions for hard processes at

present and future high energy colliders. Recently the three

loop splitting functions are introduced with a good phe-

nomenological success [11, 12, 18–23]. Though various

methods are available in order to obtain a numerical

solution of DGLAP evolution equations, exact analytical

solutions are not known. Here we solve the DGLAP evo-

lution equation in NNLO analytically by using method of

characteristics and get unique solution having good

agreement with recent experimental data. Hence it is sig-

nificant as an important phenomenological work for

studying structure functions.

2. Theory

The DGLAP evolution equation [1–4] in the standard form

is given by
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o

olnQ2

qS

g

� �
¼ Pqq Pqg;

Pgq Pgg

� �
� qS

g

� �
; ð1Þ

For evolution of singlet structure function we have to

calculate the quark–quark splitting function Pqq and gluon-

quark splitting function Pqg. But for evolution of non-

singlet structure function we have to calculate only the

quark–quark splitting function Pqq. One can write

Pqq x,Q2
� �

¼
aS Q2
� �
2p

P 0ð Þ
qq xð Þ þ

aS Q2
� �
2p

� �2

P 1ð Þ
qq xð Þ

þ
aS Q2
� �
2p

� �3

P 2ð Þ
qq xð Þ; ð2Þ

where P 0ð Þ
qq xð Þ, P1

qq xð Þ and P 2ð Þ
qq xð Þ are LO, NLO and NNLO

splitting functions respectively. Splitting functions P 0ð Þ
qq xð Þ

and P1
qq xð Þ are already defined and using these, the DGLAP

equation has been solved up to NLO in our previous papers

[19, 24–27]. By adding P
2ð Þ

qq xð Þ with previous terms we will

get the NNLO evolution equation. The three loop quark–

quark splitting function Pqq can be expressed as

Pqq ¼ P
2ð Þ

NS þ P
2ð Þ

PS ð3Þ

The non singlet contribution P
2ð Þ

NS [11, 12, 22] dominates

Pqq at large x, where the ‘pure singlet’ term P
2ð Þ

PS [23] is very

small. At small x, on the other hand, the latter contribution

takes over as xP
2ð Þ

PS does not vanish for x ? 0, unlike xP
2ð Þ

NS.

The non-singlet splitting functions P
2ð Þ

NS xð Þ can be obtained

from the N- space results of the Mellin space by an inverse

Mellin transformation.

After simplification, the singlet and non singlet DGLAP

evolution equations in NNLO take the following form

oFS
2

ot
� aS tð Þ

2p
2

3
3þ 4ln 1� xð Þf gFS

2 x,tð Þ þ IS
1 x,tð Þ

� �

� aS tð Þ
2p

� �2

IS
2 x,tð Þ � aS tð Þ

2p

� �3

IS
3 x,tð Þ

¼ 0 ð4Þ

oFNS
2

ot
� aS tð Þ

2p
2

3
3þ 4ln 1� xð Þf gFNS

2 x,tð Þ þ INS
1 x,tð Þ

� �

� aS tð Þ
2p

� �2

INS
2 x,tð Þ � aS tð Þ

2p

� �3

INS
3 x,tð Þ

¼ 0

ð5Þ

where IS
1 x,tð Þ, IS

2 x,tð Þ, IS
3 x,tð Þ, INS

1 x,tð Þ, INS
2 x,tð Þ and INS

3 x,tð Þ
are integral functions.

Now let us introduce the variable u = 1-x and since

x \x\ 1, so 0 \ u\1-x, and hence the series is con-

vergent for |u| \ 1. As x is small in our region of discus-

sion, using Taylor’s expansion series, we can rewrite

FS
2

x

x
; t

� 	
¼ FS

2 x,tð Þ þ xu

1� u

oFS
2 x; tð Þ
ox

; ð6Þ

G
x

x
; t

� 	
¼ G x,tð Þ þ xu

1� u

oG x; tð Þ
ox

ð7Þ

Using these Equations and performing u-integrations,

Eq. (4) takes the form

oFS
2 x; tð Þ
ot

� as

2p

"
A1 xð ÞFS

2 x,tð Þ þ A2 xð Þ oFS
2 x; tð Þ
ox

þ A3 xð ÞG x,tð Þ þ A4 xð Þ oG x; tð Þ
ox

#

� as

2p

� 	2

"
B1 xð ÞFS

2 x,tð Þ þ B2 xð Þ oFS
2 x; tð Þ
ox

þ B3 xð ÞG x,tð Þ

þ B4 xð Þ oG x; tð Þ
ox

#

� as

2p

� 	3

"
C1 xð ÞFS

2 x,tð Þ þ C2 xð Þ oFS
2 x; tð Þ
ox

þ C3 xð ÞG x,tð Þ

þC4 xð Þ oG x; tð Þ
ox

#
¼ 0 ð8Þ

where A1 xð Þ, A2 xð Þ, A3 xð Þ, A4 xð Þ,B1 xð Þ, B2 xð Þ, B3 xð Þ,
B4 xð Þ, C1 xð Þ, C2 xð Þ, C3 xð Þ and C4 xð Þ are some functions of x.

In order to solve Eq. (8), we need to relate the singlet

distribution function FS
2 x,tð Þ with the gluon distribution func-

tion G x,tð Þ. For small x and high Q2, the gluon is expected to

be more dominant than the sea quark. But for lower Q2, there is

no such clear-cut distinction between the two. Hence, for

simplicity, let us assume G x,tð Þ ¼ k xð ÞFS
2 x,tð Þ, where k(x) is a

suitable function of x or may be a constant. Also we have

considered two numerical parameters T0 and T1, such that

T2 tð Þ ¼ T0 � T tð Þ and T3 tð Þ ¼ T0 � T tð Þ � T tð Þ ¼ T1 � T tð Þ,
where T tð Þ ¼ aS tð Þ

2p [24–26]. Thus Eq. (8) takes the form

�t
oFS

2 x; tð Þ
ot

þ L xð Þ oFS
2 x; tð Þ
ox

þM xð ÞFS
2 x,tð Þ ¼ 0; ð9Þ

where

L xð Þ ¼ Af A2 þ KA4ð Þ þ T0 B2 þ KC4ð Þ þ T1 C2 þ KC4ð Þ½ �;

M xð Þ ¼ Af

"
A1 þ KA3 þ

oK

ox
A4

� �

þ T0 B1 þ KB3 þ
oK

ox
B4

� �

þ T1 C1 þ KC3 þ
oK

ox
C4

� �#

To introduce the method of characteristics, let us

consider two new variables S and s instead of x and t,
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such that dt
dS
¼ �t and dx

dS
¼ L xð Þ, which are known as

characteristic equations. Putting these in Eq. (9), we get
dFS

2 S;sð Þ
dS
þM(S,sÞFS

2 S,sð Þ ¼ 0, which can be solved as

FS
2 S; sð Þ ¼ FS

2 0; sð Þ exp �
ZS

0

M S; sð ÞdS

2
4

3
5 ð10Þ

For initial condition S ¼ 0) t ¼ t0 and FS
2 S; sð Þ ¼

FS
2 0; sð Þ. Now we have to replace the co-ordinate system

(S, s) by (x, t) with the input function FS
2 0; sð Þ ¼ FS

2 x,t0ð Þ
and get the t-evolution of singlet structure function in

NNLO as

FS
2 x,tð Þ ¼ FS

2 x,t0ð Þ t

t0

� �Af P1þT0P2þT1P3½ �
ð11Þ

Similarly the x-evolution of singlet structure function in

NNLO will be

FS
2 x,tð Þ ¼ FS

2 x0; tð Þ
Zx

x0

P1 þ T0P2 þ T1P3½ �
Q1 þ T0Q2 þ T1Q3½ �dx ð12Þ

where

P1 ¼ A1 þ K xð ÞA3 þ
oK xð Þ

ox
A4

� �
;

P2 ¼ B1 þ K xð ÞB3 þ
oK xð Þ

ox
B4

� �
;

P3 ¼ C1 þ K xð ÞC3 þ
oK xð Þ

ox
C4

� �
;

Q1 ¼ A2 þ K xð ÞA4ð Þ;
Q2 ¼ B2 þ K xð ÞC4ð Þ;
Q3 ¼ C2 þ K xð ÞC4ð Þ

Thus the t and x-evolution of deuteron structure

functions in NNLO can be obtained as

Fd
2 x,tð Þ ¼ Fd

2 x,t0ð Þ t

t0

� �Af P1þT0P2þT1P3½ �
ð13Þ

and

Fd
2 x,tð Þ ¼ Fd

2 x0; tð Þ
Zx

x0

P1 þ T0P2 þ T1P3½ �
Q1 þ T0Q2 þ T1Q3½ �dx; ð14Þ

where Fd
2 x,t0ð Þ ¼ 5

2
FS

2 x,t0ð Þ and Fd
2 x0; tð Þ ¼ 5

2
Fs

2 x0; tð Þ are

input functions.

Proceeding in the same way we will get the t and x

evolution of non singlet structure function from Eq. (5) as

FNS
2 x,tð Þ ¼ FNS

2 x,t0ð Þ t

t0

� �Af A1þT0B1þT1C1½ �
ð15Þ

and

FNS
2 x,tð Þ ¼ FNS

2 x0; tð Þ
Zx

x0

A1 þ T0B1 þ T1C1½ �
A2 þ T0B2 þ T1C2½ �dx; ð16Þ

To compare our results with the experimental data, we

have to consider the relation between proton and deuteron

structure functions measured in DIS with non-singlet quark

distribution function as FNS
2 x,tð Þ ¼ 3 2F

p
2 x,tð Þ � Fd

2 x,tð Þ

 �

.

3. Results and discussions

Our results of Eq. (13) for t-evolution and Eq. (14) for

x-evolution of deuteron structure function Fd
2 x,tð Þ are

compared with NMC data [28] (in muon- deuteron DIS

with incident momentum 90, 120, 200, 280 GeV2), CLAS

Collaboration [29] as well as NNPDF Collaboration [30]

data. We have also compared our results of Eqs. (15) and

(16) for t and x-evolutions of non-singlet structure function

FNS
2 x,tð Þ with NMC and E-665 [31] experimental data.

0.2

0.3

0.4

0.5

0.5 2.5 4.5

F
2d

(a) x=0.0045

Q2

 ——  NNLO  
_ _ _  NLO
. . . . .  LO   

x=0.008

0.2

0.3

0.4

0.5

0.5 2.5 4.5

Q2

F
2d

 ——  NNLO  
_ _ _  NLO

 . . . . . LO   

(b)
Fig. 1 t-evolution of deuteron

structure functions compared

with NMC data. Fd
2 x,tð Þ are

plotted against Q2 keeping

x constant for a x = 0.0045 and

b x = 0.008
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We have considered the range 0.4 B Q2 B 6.0 GeV2 for

CLAS Collaboration, 5.0 B Q2 B 50.0 GeV2 for NNPDF

Collaboration, 0.01 B x B 0.0489 and 1.496 B Q2 B

13.391 GeV2 for E665 data also 0.0045 B x B 0.14 and

0.75 B Q2 B 27 GeV2 for NMC data. It is observed that,

within these ranges, for the minimum error we have to

consider T0 = 0.048 and T1 = 0.003 [19, 24–26].

In Fig. 1, t-evolutions have been plotted as Fd
2 x,tð Þ

against Q2 keeping x constant having the values of 0.0045,

0.008, 0.0125 and 0.0175 respectively. NNLO results are

compared with our NLO, LO results and NMC data. In

Fig. 2, x-evolutions have been plotted as Fd
2 x,tð Þ against x

keeping Q2 constant with the values of Q2 = 11.5 GeV2,

15.0 GeV2, 20.0 GeV2 and 27.0 GeV2 respectively and our

NNLO results are compared with NMC data. Also we

compared our NNLO results with our NLO and LO results.

In Fig. 3, we have plotted computing values of Fd
2 x,tð Þ

for NNLO, against the x values for a fixed Q2 with

k(x) = k, a constant and our results are compared with

CLAS Collaboration data. Also we compared NNLO

results with our NLO and LO results. Though the DGLAP

evolution equation are satisfied at high Q2 and small-x, but

(a) Q2=11.5 GeV2

0.29

0.33

0.37

0.41

x

F
2d

(b) Q2=15 GeV2 

0.29

0.33

0.37

0.41

0.05 0.1 0.15 0.2

x

F
2d

0.05 0.1 0.15 0.2

 ——  NNLO  

_  _   NLO
. . . . .  LO   

 ——  NNLO  
_ _ _  NLO
. . . . .  LO   

Fig. 2 x-evolution of deuteron

structure function compared

with NMC data. Fd
2 x,tð Þ are

plotted against x keeping Q2

constant for a Q2 = 11.5 GeV2

and b Q2 = 15.0 GeV2

(a) Q2 = 5.075 GeV2

    k(x) = k = 1.2 

0.01

0.025

0.04

0.055

0.07

0.085

0.598 0.671 0.744 0.817

x

F
2d

0.0015

0.0125

0.0235

0.0345

0.745 0.84 0.935

x

F
2d

(b) Q2 = 5.925 GeV2

    k(x) = k = 0.9 

___ NNLO
_ _ _ NLO
- - -  LO

___ NNLO
_ _ _ NLO
- - -  LO

Fig. 3 x-evolution of deuteron structure functions compared with CLAS Collaboration data. Fd
2 x,tð Þ are plotted against x keeping Q2 constant for

a Q2 = 5.075 GeV2 and b Q2 = 5.925 GeV2
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CLAS data are available at comparably smaller Q2 and

higher x. Thus our NNLO results are rather satisfied with

CLAS Collaboration data. The nearly fitting curves with

high Q2 and small-x ranges that available in CLAS Col-

laboration get for 0.6 B k B 1.0.

In Figs. 4 and 5, we have plotted our computed NNLO

values of Fd
2 x,tð Þ against the Q2 values in a fixed x for

t-evolution and against the x values in a fixed Q2 for

x-evolution and our results are compared with NNPDF

collaboration data. Also we have compared the NNLO

results with our NLO and LO results. Here we have con-

sidered k(x) = k, a constant and best-fit curves get for

k = 1.1 at x = 0.01 and Q2 = 30 GeV2.

In Fig. 6, t-evolutions have been plotted as FNS
2 x,tð Þ

against Q2 keeping x constant with the values of 0.01,

0.017, 0.024 and 0.035 for E665 data and 0.0045, 0.008,

0.0125 and 0.0175 for NMC data. Here also we have

compared the NNLO results with our NLO and LO results.

For clarity, data are scaled up by ?0.5i for E-665 data and

by ?0.3i (i = 0, 1, 2, 3, - -) for NMC data, starting from

bottom of all graphs in each Figure.

In Fig. 7, x-evolutions have been plotted as FNS
2 x,tð Þ

against x keeping Q2 constant with the values of

Q2 = 5.236 GeV2, 7.176 GeV2, 9.795 GeV2, 13.391 GeV2

for E665 data and 9.0 GeV2, 11.5 GeV2, 15.0 GeV2,

20.0 GeV2 for NMC data. Here also we have compared the

NNLO results with our NLO and LO results. For clarity, data

are scaled up by ?0.5i for E665 data and by ?0.2i for NMC

data, starting from bottom of all graphs in each Figure.

x = 0.01

0.45

0.48

0.51
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F
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 NNLO
− − NLO
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Fig. 4 t-evolution of deuteron structure functions in NNLO com-

pared with NNPDF Collaboration data considering k (x) = k, a

constant

Q2 = 30 GeV2
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F
2d

 NNLO
− − NLO
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Fig. 5 x-evolution of deuteron structure functions in NNLO com-

pared with NNPDF Collaboration data considering k(x) = k, a

constant

(a) t-evolution (E665 data)
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(b) t-evolution (NMC-data)

 _____  NNLO 
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Fig. 6 t-evolution of non-

singlet structure function
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2 x,tð Þ are plotted against Q2

keeping x constant compared

with a E—665 data and b NMC

data

Solution of singlet and non-singlet



4. Conclusions

In this paper, we have solved the DGLAP evolution

equation by the method of characteristics and have

obtained the singlet and non-singlet structure functions.

Here we have found that the t and x-evolution of deuteron

structure function as well as non-singlet structure function,

which is the combination of proton and deuteron structure

functions, are in good consistency with the NMC, E-665,

CLAS Collaboration data sets and NNPDF collaboration

parameterization results. On an average the percentage

errors of our results in LO, NLO and NNLO are 0.0067,

0.0049 and 0.0036 % with NMC data, 0.0054, 0.0032 and

0.0016 % with E-665 data, 0.0068, 0.0043 and 0.0029 %

with CLAS data also 0.0036, 0.0083 and 0.014 % with

NNPDF Collaboration results respectively. Here except in

case of NNPDF Collaboration, the contribution of NNLO

is found to be high at the lower-x and higher Q2. In NNPDF

Collaboration, data are available only at lower Q2 and

higher–x where DGLAP equation does not hold good. Here

we can claim that in our presentation, we consider very few

numbers of parameters in comparison to the other methods.
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